metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dong-Dong Lin,^a Li Zhang^b and Duan-Jun Xu^a*

^aDepartment of Chemistry, Zhejiang University, People's Republic of China, and ^bDepartment of Food Science, Hangzhou Institute of Commerce, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.023 wR factor = 0.056 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

Poly[disodium bis(µ-malonato)zincate(II) dihydrate]

The title compound, $\{Na_2[Zn(C_3H_2O_4)_2]\cdot 2H_2O\}_n$, is a threedimensional polymeric complex bridged by malonate dianions. The malonate ligand exhibits versatile coordination modes and links two Zn^{II} and four Na^I atoms. The Zn atom occupies a special position in an inversion centre and is chelated by two malonate ligands [Zn-O = 2.0230 (10) and 2.0875 (11) Å]; two other malonates are involved in monodentate coordination of the Zn atom [Zn-O = 2.2789 (12) Å], thus completing its octahedral coordination environment. The Na atom also has a distorted octahedral coordination, formed by four carboxylate O atoms of four malonate ligands [2.4328 (15)-2.5493 (13) Å] and two water molecules [2.3749 (15) and 2.4144 (14) Å].

Comment

The versatile coordination modes of dicarboxylates have been revealed in metal complexes. This work presents the coordination modes of malonate in the title polymeric Zn^{II} and Na^I complex, (I).

The coordination environments of the Zn^{II} and Na^I atoms are illustrated in Fig. 1. The Zn^{II} atom is located at an inversion centre and assumes a distorted octahedral coordination geometry. Two malonate dianions chelate the Zn^{II} atom, with normal Zn-O bond distances of 2.0230 (10) and 2.0875 (11) Å, while two other malonate ligands are involved in the monodentate coordination of the Zn^{II} atom, with a longer Zn-O bond distance of 2.2789 (12) Å. A similar elongated octahedral coordination geometry was observed in the Cu^{II} analogue (Barnes & Weakley, 1997). The Na^I atom also has a distorted octahedral coordination, formed by four carboxylate O atoms of four malonate ligands [Na-O =2.4328 (15)-2.5493 (13) Å] and two water molecules [2.3749 (15) and 2.4144 (14) Å].

Thus, the malonate dianion in the structure of the title compound exhibits versatile coordination modes and bridges two Zn^{II} and four Na^I atoms, as shown in Fig. 2. While the

Received 15 September 2003 Accepted 6 October 2003 Online 15 October 2003

Mo $K\alpha$ radiation

reflections

 $\theta = 2.5 - 24.5^{\circ}$ $\mu = 2.44 \text{ mm}^{-1}$

T = 295 (2) K

 $R_{\rm int}=0.021$

 $\theta_{\rm max} = 27.4^{\circ}$ $h = -8 \rightarrow 8$

 $k = -12 \rightarrow 12$

 $l = -21 \rightarrow 21$

Prism, colourless

 $0.26 \times 0.20 \times 0.19 \text{ mm}$

1206 independent reflections

1089 reflections with $I > 2\sigma(I)$

 $+ 2F_{c}^{2})/3$

Cell parameters from 8742

Figure 1

The coordination environments of the Zn^{II} and Na^I atoms, showing 40% probability displacement ellipsoids. The dashed line denotes the hydrogen bond. [Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, -z$; (ii) $x - \frac{1}{2}, y$, $\frac{1}{2} - z$; (iii) $\frac{3}{2} - x$, $y - \frac{1}{2}$, z; (iv) 1 - x, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (v) 1 - x, -y, -z.]

Figure 2

A diagram showing the versatile coordination modes of a malonate dianion. [Symmetry codes: (v) 1 - x, -y, -z; (vi) $\frac{1}{2} + x$, $\frac{1}{2} - y$, -z; (vii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z;$ (viii) $\frac{3}{2} - x, \frac{1}{2} + y, z.$]

malonate ligand chelates the Zn^{II} atom by both terminal carboxyl groups (through atoms O1 and O3), it also bridges the Zn^{II} and Na^I atoms through atoms O2 and O4 of both carboxyl groups. The C3-carboxyl group of the malonate bridges a Zn^{II} and an Na^I atom, and the C1-carboxyl group bridges three neighbouring Na^I atoms. Atom O4 coordinates only one Zn^{II} atom, whereas atoms O1, O2 and O3 of the malonate bind two metal atoms each and bring about forced contacts between metal atoms, with a $Zn \cdots Na$ separation of 3.5634 (7) Å and an Na^{vii}···Na^{viii} separation of 3.7751 (11) Å (Fig. 2).

Two water molecules (O5 and O5ⁱⁱ) coordinate to each Na atom (Fig. 1). The Na-O5-H5A and Na-O5-H5B angles are significantly different (94.1 and 137.6°, respectively), whereas the Na $-O5^{ii}-H5A^{ii}$ and Na $-O5^{ii}-H5B^{ii}$ angles are essentially identical (107.2 and 101.5°). The smaller Na-O5-H5A angle of 94.1°, related to the shorter Na \cdots H5A separation of 2.63 Å, is due to the involvement of $O5-H5A\cdots O2$ hydrogen bonding in the six-membered pseudo-ring, the $O5 \cdots O2$ distance and $O5 - H5A \cdots O2$ angle being 2.7129 (17) Å and 169°, respectively.

Experimental

An aqueous solution (10 ml) containing zinc(II) chloride (1 mmol) and benzimidazole (2 mmol) was mixed with an aqueous solution (10 ml) of malonic acid (1 mmol) and Na₂CO₃ (1 mmol). The mixture was refluxed for 2 h. After 5 d, prismatic crystals of the title compound were obtained along with crystals of a different type, viz. thin plates. The latter, however, were not suitable for X-ray analysis.

Crystal data

 $Na_2[Zn(C_3H_2O_4)_2]\cdot 2H_2O$ $M_r = 351.49$ Orthorhombic, Pbca a = 6.8359 (10) Åb = 9.3875 (13) Åc = 16.5518 (14) ÅV = 1062.2 (2) Å³ Z = 4 $D_x = 2.198 \text{ Mg m}^{-3}$

Data collection

Rigaku R-AXIS RAPID diffractometer (i) scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.530, \ T_{\max} = 0.626$ 8878 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.026P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.023$	+ 0.6078P]
$wR(F^2) = 0.056$	where $P = (F_o^2 + 2F_c^2)/(F_o^2 + 2F_c^2)/(F_o^2)/(F_o^2 + 2F_c^2)/(F_$
S = 1.17	$(\Delta/\sigma)_{\rm max} = 0.001$
1206 reflections	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
88 parameters	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å).

Na-O2 ^{iv}	2.5338 (15)		
Na-O1	2.5493 (13)	Na-O5 ⁱⁱ	2.3749 (15)
$Zn-O4^{i}$	2.2789 (12)	Na-O5	2.4144 (14)
Zn-O3	2.0875 (11)	Na-O3 ^v	2.5419 (13)
Zn-O1	2.0230 (10)	Na-O2 ⁱⁱⁱ	2.4328 (15)

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, -z$; (ii) $x - \frac{1}{2}, y, \frac{1}{2} - z$; (iii) $\frac{3}{2} - x, y - \frac{1}{2}, z$; (iv) $1-x, y-\frac{1}{2}, \frac{1}{2}-z; (v) 1-x, -y, -z.$

The H atoms of the water molecule were located in a difference Fourier map and included in structure-factor calculations with fixed positional parameters and displacement parameters set equal to 0.05 Å². The C-bound H atoms were placed in calculated positions, with C-H = 0.97 Å, and were included in the final cycles of refinement in the riding mode, with $U_{iso}(H) = 1.2U_{eq}$ of the carrier atom.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC and Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The work was financially supported by the Analytical Foundation of Zhejiang University.

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Barnes, J. C. & Weakley, T. J. R. (1997). Acta Cryst. C53, IUC9700026. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC & Rigaku (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Akishima, Tokyo, Japan.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.